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STRUCTURE OF THE GENERAL SOLUTION OF THE MOMENT

PROBLEM IN NORMED SPACES AND ITS APPLICATIONS

M.I. MUSTAFAYEV1, A.O. ATAGÜN1, M. EKİCİ1

Abstract. In this paper, we consider the abstract moment problem in normed spaces and

determine the structure of the general solution of this problem. As an example, we consider the

control problem for a class of linear distributed-parameter control systems and determine the

structure of the general solution of this problem.
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1. Introduction

Moment problem occupies an important place in the mechanics and mathematics literature

from the end of the nineteenth century. Many problems in functional analysis, control theory,

probability and statistics can be written as a moment problem [2, 9, 13, 14].

The abstract moment problem in a normed spaceX is to find a bounded linear functional f ∈ X∗

satisfying

⟨φk, f⟩ = ak, k = 1, 2, ..., (1)

given linearly independent elements φ1, φ2, ..., φn, ... ∈ X and the numbers a1, a2, ..., an, ..., which

are complex numbers when X is a complex normed space and are real numbers when X is a real

normed space. Here, the space X∗ is the dual space of the space X and the notation ⟨x, f⟩ shows
value in x ∈ X of a linear functional f ∈ X∗. Finding the necessary and sufficient conditions

for the existence of such a functional f is called the classical moment problem. The existence

of a solution f ∈ X∗ to the problem in (1) has been extensively analyzed. Several necessary

and sufficient conditions for the existence can be found in the literature, e.g. [2, 9, 13, 14].

The moment problems and control problems have been studied extensively in the literature

[1, 2, 3, 4, 5, 6, 8, 9, 12, 13, 14, 16, 17, 19, 20, 22].

In this paper, we determine the structure of the general solution of the moment problem (1).

The method we follow is similar to finding the general solution of linear algebraic and linear

differential equations. In addition, we consider homogenous moment problem

⟨φk, f⟩ = 0, k = 1, 2, ... . (2)

The general solution of the non-homogenous moment problem (1) is written as the sum of a

particular solution of the moment problem (1) and a general solution of the homogenous moment

problem (2). We also give a construction method of a particular solution of the moment problem

(1). Furthermore, we show how to translate a control problem of a class of distributed-parameter
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control systems into a moment problem; and determine the structure of the general solution of

this control problem.

2. Structure of the general solution

In this section, we determine the structure of the general solution of the moment problem (1).

It is clear that f ≡ 0 is the trivial solution of the homogenous moment problem (2). Each non-

trivial solution of the homogenous moment problem (2) is called null-solution and any solution

of the non-homogenous moment problem (1) is called a particular solution, denoted by f◦ and

f∗, respectively.

Theorem 2.1. Every solution f of the non-homogenous moment problem (1) can be written as

the sum of a special solution f∗ and the null-solution f◦, that is

f = f∗ + f◦.

Proof. Assume that the functional f is any solution of the moment problem (1) and f∗ is a

particular solution of the moment problem (1). Then,

⟨φk, f⟩ = ak, k = 1, 2, ..., (3)

⟨φk, f
∗⟩ = ak, k = 1, 2, ... . (4)

If we subtract the equalities (3) and (4) at a same index k, we find the equality

⟨φk, f − f∗⟩ = 0, k = 1, 2, ... . (5)

From the equalities (5), it is seen that the difference f − f∗ is the solution of the homogenous

moment problem (2) corresponding to moment problem (1):

f − f∗ = f◦. (6)

From the equality (6), we obtain

f = f∗ + f◦.

Thus, the proof is completed.

Proposition 2.1. There exists a non-zero functional f◦ satisfying

⟨φk, f
◦⟩ = 0, k = 1, 2, ...,

if and only if the system {φn : n = 1, 2, . . . } is not a complete system.

Proof. We prove the necessary condition when X is countable based Banach space which is

given in [24]. Suppose {φk} is a complete system in X, and the functional f◦ is a solution of

the moment problem (2). Then, an arbitrary element x ∈ X has a unique expansion

x =

∞∑
n=1

αnφn. (7)

If we substitute (7) into the homogenous moment problem (2), we obtain

⟨x, f◦⟩ =

⟨ ∞∑
k=1

αkφk, f
◦

⟩
=

∞∑
k=1

αk ⟨φk, f
◦⟩ = 0.



24 TWMS J. PURE APPL. MATH., V.8, N.1, 2017

Since this is valid for each x ∈ X, we have f◦ ≡ 0. This contradiction proves necessary condi-

tion. Sufficient condition follows directly from Hahn-Banach Theorem.

The following theorem can be easily proved, hence the proof is omitted.

Theorem 2.2. Assume that the functionals f◦1 , f
◦
2 , ..., f

◦
n ∈ X∗ are linearly independent so-

lutions of the homogenous moment problem (2). Then also the linear functional f◦ defined by

equality

f◦ = c1f
◦
1 + c2f

◦
2 + · · ·+ cnf

◦
n,

where c1, c2, ..., cn are arbitrary constants, is a solution of the homogenous moment problem (2).

By Theorem 2.2., the general solution f of the non-homogenous moment problem (1) can be

defined as

f = f∗ +
∑
i

cif
◦
i ,

where ci are arbitrary constants.

Now, we assume that the system f1, f2, ..., fn, ... ∈ X∗ is biorthogonal to the system φ1, φ2, ..., φn, ...,

that is these systems satisfy the conditions

⟨φk, fℓ⟩ = δkℓ =

{
1, k = ℓ,

0, k ̸= ℓ.
(8)

Here, the symbol δkℓ is Kronecker constant.

Theorem 2.3. The linear functional defined by

f∗ = a1f1 + a2f2 + · · ·+ anfn + · · ·, (9)

is a solution of the moment problem (1).

The theorem is easily proved by replacing the equality (9) into the non-homogenous moment

problem (1) and using the equalities (8). Thus, the general solution f of the non-homogenous

moment problem (1) is denoted as

f =
∑
k

akfk +
∑
i

cif
◦
i , (10)

where ci are arbitrary constants.

Note 2.1. The constants c1, c2, ..., cn, ... in (10) can be used in the problem of minimaliza-

tion of the functional J(f) which characterizes the control process. The f of the functional J(f)

is defined by equation (10). In this case, J(f) becomes a function of the variables c1, c2, ..., cn, ... .

In the special case, the functional J(f) can be taken as

J(f) = ||f ||.

3. On the control problem for a class of linear distributed-parameter systems

3.1. Statement of the problem. Let us consider the following control system given with the

equation

m

(
∂

∂t

)
Q = ℓ

(
x,

∂

∂x

)
Q+ b(x)f(t), (11)
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and the boundary conditions

R1(Q) ≡ α1Q
′
x(0, t) + β1Q(0, t) = u1(t), α2

1 + β21 ̸= 0,

R2(Q) ≡ α2Q
′
x(ℓ, t) + β2Q(ℓ, t) = u2(t), α2

2 + β22 ̸= 0.
(12)

Here,

ℓ

(
x,

∂

∂x

)
Q =

∂

∂x

(
p(x)

∂Q

∂x

)
+ q(x)Q,

m

(
∂

∂t

)
Q = a0

∂2Q

∂t2
+ a1

∂Q

∂t
,

where the coefficients a0 and a1 are real constants. The equation (11) is the vibration equation

of a wire with length ℓ when a0 = 1, a1 = 0, the thermal conductivity equation of a wire with

length ℓ when a0 = 0, a1 = 1 and the Poisson equation when a0 = −1, a1 = 0. Hereafter, we will

focus on these cases. Here, the functions p(x), q(x), b(x) are all defined on [0, ℓ]. We assume that

on [0, ℓ], p(x) is positive and two times continuously differentiable, q(x) is continuous, and b(x)

is two times continuously differentiable and it satisfies boundary conditions b(0) = 0, b(ℓ) = 0

[7]. We consider f(t), u1(t) and u2(t) as control functions.

The control problem for the system (11)-(12) is expressed as follows:

Given a set of initial and boundary conditions of time variable t on a bounded interval [0, T ], we

want to find functions f(t), u1(t), u2(t) in such a way that the system given with the conditions

(11)-(12) will be carried to a desired final state. This control parameter triplet f(t), u1(t), u2(t)

is also the unique solution of the initial-boundary value problem given above. We note that the

initial and final conditions are given according to the form of the differential expressionm(∂/∂t).

For example, in the case that a0 = 0, a1 ̸= 0 the initial and the final state conditions are given

as

Q(x, 0) = Q0(x), 0 < x < ℓ,

Q(x, T ) = Q1(x), 0 < x < ℓ.
(13)

However, in the case that a0 ̸= 0 the initial and the final state conditions are given as

Q(x, 0) = Q0(x), 0 < x < ℓ,

Q′
t(x, 0) = Q

(1)
0 (x), 0 < x < ℓ,

(14)

and

Q(x, T ) = Q1(x), 0 < x < ℓ,

Q′
t(x, T ) = Q

(1)
1 (x), 0 < x < ℓ,

(15)

where Q0(x), Q1(x), Q
(1)
0 (x), Q

(1)
1 (x) are given functions defined on the interval [0, ℓ].

Definition 3.1. The control problem expressed with the equations (11)-(12) is called homoge-

nous control problem if the initial and the final state conditions are homogenous i.e. for a0 = 0,

a1 ̸= 0

Q(x, 0) = Q0(x) ≡ 0, 0 < x < ℓ,

Q(x, T ) = Q1(x) ≡ 0, 0 < x < ℓ,

for a0 ̸= 0

Q(x, 0) = Q0(x) ≡ 0, 0 < x < ℓ,

Q′
t(x, 0) = Q

(1)
0 (x) ≡ 0, 0 < x < ℓ,
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and

Q(x, T ) = Q1(x) ≡ 0, 0 < x < ℓ,

Q′
t(x, T ) = Q

(1)
1 (x) ≡ 0, 0 < x < ℓ.

Otherwise, it is a non-homogenous control problem.

Definition 3.2. Nontrivial control factor carrying the control system from the zero initial state

to the zero final state in a finite time interval is called the zero control factor or zero control.

Control factor carrying the control system from a given initial state to a given final state in

a finite time interval is called finite control [9, 10, 11].

3.2. Boundary value problems with parameter corresponding to the control systems.

In the control problem or control system (11), (12) and (13) [or (11), (12), (14) and (15)], we

apply 1D Fourier transform in the second variable and get

Q̃(x, ω) =

∫ T

0
Q(x, t)e−iωtdt.

Thus, we obtain the following parametrized boundary value problem

ℓ

(
x,

∂

∂x

)
Q̃+ λQ̃(x, ω) = F (x, ω), (16)

R1(Q̃) = ũ1(ω),

R2(Q̃) = ũ2(ω).
(17)

Here,

λ = a0ω
2 − a1iω,

F (x, ω) =a0

[
Q

(1)
1 (x)e−iωT −Q(1)(x) + iω

(
Q1(x)e

−iωT −Q0(x)
)]

+ a1
[
Q1(x)e

−iωT −Q0(x)
]
+ b(x)f̃(x). (18)

We suppose that the functions ψ1(x, ω) and ψ2(x, ω) are the solutions of boundary value problems

ℓ

(
x,

∂

∂x

)
ψ1 + λψ1 = 0, R1(ψ1) = 0,

ℓ

(
x,

∂

∂x

)
ψ2 + λψ2 = 0, R2(ψ2) = 0.

Then, the solution of equation (16) satisfying boundary conditions (17) is found by

Q̃(x, ω) =
ψ2(x, ω)

R1(ψ2)
ũ1(ω) +

ψ1(x, ω)

R2(ψ1)
ũ2(ω) +

∫ ℓ

0
G(x, ξ, ω)F (ξ, ω)dξ. (19)

G(x, ξ, ω) is the Green function and is expressed in [7] as the following

G(x, ξ, ω) = − 1

p(0)W (0, ω)

{
ψ1(x, ω)ψ2(ξ, ω), 0 ≤ x ≤ ξ,

ψ1(ξ, ω)ψ2(x, ω), ξ ≤ x ≤ ℓ.

Here, the function W (x, ω) is Wronskii determinant of the functions ψ1(x, ω) and ψ2(x, ω).

Now, let y1(x, ω) and y2(x, ω) be the solutions of the equation

ℓ

(
x,

∂

∂x

)
y + λy = 0,
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satisfying the conditions

y
(s−1)
k (0, ω) = δk,s =

{
0, k ̸= s,

1, k = s.

Then, we can get the functions ψ1(x, ω) and ψ2(x, ω) as

ψ1(x, ω) =

∣∣∣∣y1(x, ω) y2(x, ω)

R1(y1) R1(y2)

∣∣∣∣ , (20)

ψ2(x, ω) =

∣∣∣∣y1(x, ω) y2(x, ω)

R2(y1) R2(y2)

∣∣∣∣ . (21)

The equalities

R1(ψ2) = ∆(ω), R2(ψ1) = −∆(ω), W (0, ω) = ∆(ω),

can easily be shown. Here,

∆(ω) =

∣∣∣∣R1(y1) R2(y2)

R2(y1) R2(y2)

∣∣∣∣ .
Using these relations, we can write the formula (19) as

Q̃(x, ω) =
ψ2(x, ω)ũ1(ω)− ψ1(x, ω)ũ2(ω)− h(x, ω)/p(0)

∆(ω)
.

Here,

h(x, ω) = ψ2(x, ω)

∫ x

0
F (ξ, ω)ψ1(x, ω)dξ + ψ1(x, ω)

∫ ℓ

x
F (ξ, ω)ψ2(ξ, ω)dξ. (22)

In our setting, the function Q(x, t) must be compactly supported in the interval [0, T ] in the

second variable. Moreover, Q(x, t) ∈ L2[0, T ] for all x ∈ [0, ℓ]. Hence, according to Wiener-Paley

Theorem, for each x, the function Q̃(x, z) is an entire function of exponential type with degree

not exceeding T . According to Wiener-Paley Theorem, the converse is also true, i.e., H(z) is an

entire function of exponential type, its inverse Fourier transform of is supported by the interval

[0, T ]. Thus, to make the function Q(x, t) finite with respect to time, the functions f̃(w), ũ1(w)

and ũ2(w) must be selected such that the function Q̃(x,w) has the needed analyticity. Recall

that the spectral problem

ℓ

(
x,

∂

∂x

)
ψ + λψ = 0, R1(ψ) = 0, R2(ψ) = 0,

has real characteristic values {−λk} and characteristic functions φk(x) corresponding to the

characteristic values. This characteristic values are enumerated in ascending order [15, 21, 23]:

λ1 < λ2 < · · · < λn < λn+1 < · · ·,

and

lim
n→∞

λn = +∞.

The points that the function Q̃(x, ω) is not regular are exactly the points ωk, which can be

founded from

a0ω
2
k − iωka1 = −λk, k = 1, 2, ... .

Without loss of generality, here we assume that characteristic numbers λk are not repeated. For

certainty, we consider the cases

a0 = 0, a1 = 1,
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a0 = 1, a1 = 0,

a0 = −1, a1 = 0.

Corresponding to these cases

ωk = iλk,

ωk = i
√
λk,

ωk = ±
√
λk .

For the function Q̃(x, ω) be regular at the points ωk, the equalities

ψ2(x, ωk)ũ1(ωk)− ψ1(x, ωk)ũ2(ωk)−
1

p(0)
h(x, ωk) = 0, (23)

must be satisfied for ωk, k = 1, 2, ... . From (20) and (21), the inequalities

ψ1(x, ωk) = −p(0)
b0k

φk(x), k = 1, 2, ..., (24)

ψ2(x, ωk) =
p(0)

b1k
φk(x), k = 1, 2, ..., (25)

are obtained. Here,

b0k =


−p(0)
α1

φk(0), α1 ̸= 0, k = 1, 2, ...,

p(0)

β1
φ′
k(0), α1 = 0, k = 1, 2, ...,

b1k =


p(ℓ)

α2
φk(ℓ), α2 ̸= 0, k = 1, 2, ...,

−p(ℓ)
β2

φ′
k(ℓ), α2 = 0, k = 1, 2, ... .

By substituting equalities (24) and (25) into (22) we find the equalities

h(x, ωk) =
p(0)

b0kb
1
k

∫ ℓ

0
F (ξ, ωk)φk(ξ)dξ, k = 1, 2, ... . (26)

By substituting the (26) into (23) we obtain the equality

b0kũ1(ωk) + b1kũ2(ωk)−
∫ ℓ

0
F (ξ, ωk)φk(ξ)dξ = 0, k = 1, 2, ... . (27)

Using the expression of F (x, ωk) defined by (18) in (27), we obtain

b0kũ1(ωk) + b1kũ2(ωk) + bkf̃(ωk) = δk, k = 1, 2, ..., (28)

where

δk =


Q1ke

−iωkT −Q0k, a0 = 0, a1 ̸= 0, k = 1, 2, ...,

Q
(1)
1k e

−iωkT −Q
(1)
k + iωk

(
Q1ke

−iωkT −Q0k

)
, a0 ̸= 0, k = 1, 2, ...,

−
[
Q

(1)
1k e

−iωkT −Q
(1)
k + iωk

(
Q1ke

−iωkT −Q0k

)]
, a0 ̸= 0, k = 1, 2, ...,

Q0k =

∫ ℓ

0
Q0(x)φk(x)dx, ..., Q

(1)
1k =

∫ ℓ

0
Q

(1)
1 (x)φk(x)dx.
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The condition (28) is the interpolation problem to find the functions f̃(ω), ũ1(ω) and ũ2(ω).

The equality (28) is a linear algebraic equation with three unknowns, for each number k. We

can show the general solution of (28) as

f̃(ωk) = ck1, k = 1, 2, ...,

ũ1(ωk) = ck2, k = 1, 2, ...,

ũ2(ωk) = − 1

b1k

(
bkck1 + b0kck2

)
, k = 1, 2, ...,

(29)

where ck1 and ck2 are arbitrary constants. We find the general solution of homogenous control

problem for system (11)-(12) by solving (29), which is the interpolation problem given in [18].

Here, since

ũ1(ωk) =

∫ T

0
e−iωktu1(t)dt,

ũ2(ωk) =

∫ T

0
e−iωktu2(t)dt,

f̃(ωk) =

∫ T

0
e−iωktf(t)dt,

we have carried the control problem considered from equalities (29), to the equivalent moment

problem [10]: ∫ T

0
e−iωktf(t)dt = ck1, k = 1, 2, ...,∫ T

0
e−iωktu1(t)dt = ck2, k = 1, 2, ...,∫ T

0
e−iωktu2(t)dt =

1

b1k

(
δk − bkck1 − b0kck2

)
, k = 1, 2, ... .

(30)

In (30), if we take Q0k = 0, Q1k = 0 and Q
(1)
1k = 0, we obtain the equivalent moment problem

for the homogenous control problem given with the system (11)-(12).

3.3. The structure of the general solution of the non-homogenous control problem

for the system (11)-(12). We prove the theorem determining the structure of the general

solution of the control problem for linear systems.

Theorem 3.1. If the functions f0(t), u10(t) and u20(t) form a special solution of the non-

homogenous control problem of the system (11)-(12), then the general solution of this problem

is found by

f(t) = f∗(t) + f0(t),

u1(t) = u∗1(t) + u10(t),

u2(t) = u∗2(t) + u20(t),

where the triplet f∗(t), u∗1(t) and u
∗
2(t) is the general solution of the corresponding homogenous

control problem.

Proof. According to our assumption the triplet f0(t), u10(t) and u20(t) is a solution of non-

homogenous control problem

m

(
∂

∂t

)
Q0 = ℓ

(
x,

∂

∂x

)
Q0 + b(x)f0(t),

R1(Q0) = u10(t), R2(Q0) = u20(t),
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Q0(x, 0) = Q0(x), Q0(x, T ) = Q1(x),

Q0
′
t(x, 0) = Q(1)(x), Q0

′
t(x, T ) = Q

(1)
1 (x).

The triplet f∗(t), u∗1(t) and u∗2(t) is a solution of the corresponding homogenous control prob-

lem. Now, suppose that the triplet f(t), u1(t) and u2(t) is an arbitrary solution for the non-

homogenous control problem for the system (11)-(12). Then the differences f∗(t) = f(t)−f0(t),
u∗1(t) = u1(t)− u10(t) and u

∗
2(t) = u2(t)− u20(t) is clearly a solution of the homogenous control

problem

m

(
∂

∂t

)
Q = ℓ

(
x,

∂

∂x

)
Q+ b(x)f∗(t),

R1(Q) = u∗1(t), R2(Q) = u∗2(t),

Q(x, 0) = 0, Q(x, T ) = 0,

Q′
t(x, 0) = 0, Q′

t(x, T ) = 0.

Thus, the proof is completed.

Example. Suppose that the control system is given by the equation

∂2Q

∂t2
=
∂2Q

∂x2
, 0 < x < 1, 0 < t < T, (31)

and boundary conditions

Q(0, t) = u(t), 0 ≤ t ≤ T,

Q(1, t) = 0, 0 ≤ t ≤ T.
(32)

We find the general solution of homogenous control problem for the system (31)-(32). If we

perform Fourier transformation in the system (31)-(32), considering zero initial state conditions

and zero final state conditions, we pass to the control system

d2Q̃

dx2
+ ω2Q̃ = 0, (33)

Q̃(0, ω) = ũ(ω), Q̃(1, ω) = 0, (34)

dependent to the parameter. Then, for the system (33)-(34)

y1(x, ω) = cosωx, y2(x, ω) =
sinωx

ω
,

R1(y1) = 1, R1(y2) = 0,

R2(y1) = cosω, R2(y2) =
sinω

ω
.

Thus,

ψ1(x, ω) =
sinωx

ω
, ψ2(x, ω) =

sinω(1− x)

ω
,

∆(ω) =
sinω

ω
, ωk = kπ, k = 1, 2, ... .

The solution of the system (33)-(34) is found as

Q̃ =
sinω(1− x) ũ(ω)

sinω
.

The interpolation condition for the function ũ(ω) is

ũ(ωk) = 0, k = 1, 2, ... . (35)
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The solution of the interpolation problem (35) is found in [18] as

ũ(ω) = γ(ω) sinω.

Here γ(ω) is a complete function such that ũ(ω) ∈ L2(−∞,∞). For example, we can take

γ =
c

ω
,

where c is a constant. Then

ũ(ω) =
c sinω

ω
.

Using the inverse Fourier transform

u(t) =
1

2π

∫ ∞

−∞
eiωtũ(ω)dω,

we find the equality

u(t) =

{
c, 0 < t < 2,

0, t ∈ (−∞,∞) \ (0, 2).
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